Flood Impacts on Net Ecosystem Exchange in the Midwestern and Southern United States in 2019

Author:

Balashov Nikolay V.12ORCID,Ott Lesley E.1ORCID,Weir Brad134ORCID,Basu Sourish12ORCID,Davis Kenneth J.56ORCID,Miles Natasha L.5ORCID,Thompson Anne M.78ORCID,Stauffer Ryan M.7ORCID

Affiliation:

1. NASA Global Modeling and Assimilation Office (GMAO) Goddard Space Flight Center Greenbelt MD USA

2. Earth System Science Interdisciplinary Center University of Maryland College Park MD USA

3. Universities Space Research Association Columbia MD USA

4. Now at Morgan State University MD Baltimore USA

5. Department of Meteorology and Atmospheric Science The Pennsylvania State University University Park PA USA

6. Earth and Environmental Systems Institute The Pennsylvania State University University Park PA USA

7. Earth Sciences Division NASA Goddard Space Flight Center Greenbelt MD USA

8. University of Maryland Baltimore County Baltimore MD USA

Abstract

AbstractClimate extremes such as droughts, floods, heatwaves, frosts, and windstorms add considerable variability to the global year‐to‐year increase in atmospheric CO2 through their influence on terrestrial ecosystems. While the impact of droughts on terrestrial ecosystems has received considerable attention, the response to flooding is not well understood. To improve upon this knowledge, the impact of the 2019 anomalously wet conditions over the Midwest and Southern US on CO2 vegetation fluxes is examined in the context of 2017–2018 when such precipitation anomalies were not observed. CO2 is simulated with NASA's Global Earth Observing System (GEOS) combined with the Low‐order Flux Inversion, where fluxes of CO2 are estimated using a suite of remote sensing measurements including greenness, night lights, and fire radiative power as well as with a bias correction based on insitu observations. Net ecosystem exchange CO2 tracers are separated into the three regions covering the Midwest, South, and Eastern Texas and adjusted to match CO2 observations from towers located in Iowa, Mississippi, and Texas. Results indicate that for the Midwestern region consisting primarily of corn and soybeans crops, flooding contributes to a 15%–25% reduction of annual net carbon uptake in 2019 in comparison to 2017 and 2018. These results are supported by independent reports of changes in agricultural activity. For the Southern region, comprised mainly of non‐crop vegetation, annual net carbon uptake is enhanced in 2019 by about 10%–20% in comparison to 2017 and 2018. These outcomes show the heterogeneity in effects that excess wetness can bring to diverse ecosystems.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3