A Coupled Deep Learning Model for Estimating Surface NO2 Levels From Remote Sensing Data: 15‐Year Study Over the Contiguous United States

Author:

Ghahremanloo Masoud1ORCID,Lops Yannic1ORCID,Choi Yunsoo1ORCID,Mousavinezhad Seyedali1,Jung Jia1

Affiliation:

1. Department of Earth and Atmospheric Sciences University of Houston Houston TX USA

Abstract

AbstractThis study proposes a novel two‐step deep learning (DL) model for estimating surface NO2 concentrations using satellite data over the contiguous United States (CONUS) from 2005 to 2019. The first phase of the model uses partial convolutional neural network (PCNN), an advanced DL model that accurately imputes gaps between surface NO2 stations and creates 5,478 daily‐mean NO2 grids (PCNN‐NO2) of the 2005–2019 period over the study area. We then feed the PCNN‐NO2, along with other predictor variables, into a deep neural network (DNN) to estimate surface NO2 levels, achieving exceptional performance with a correlation coefficient of 0.975–0.978, a mean absolute bias of 0.99–1.38 ppb, and a root mean square error of 1.47–1.97 ppb. Spatial cross‐validation results also indicate strong spatial performance of PCNN‐DNN surface NO2 estimates. In addition to its accurate estimates, the PCNN‐DNN model consistently generates estimated NO2 grids without any missing values, improving the quality of various applications such as emission reduction strategies and public health studies. Between 2005 and 2019, the 5,478 daily estimated NO2 grids over the CONUS reveal significant reductions in NO2 levels in 14 major urban environments: Washington D.C. (−43%), New York (−45%), Los Angeles (−38%), Chicago (−25%), Boston (−43%), Houston (−34%), Dallas (−40%), Philadelphia (−41%), Phoenix (−38%), Detroit (−20%), Denver (−23%), Atlanta (−0.7%), Cincinnati (−38%), and Pittsburgh (−56%). Furthermore, the study shows that the denser urban regions that in‐situ stations are installed in, the higher the difference between in‐situ observations and regional‐mean NO2 levels.

Funder

Goddard Space Flight Center

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Reference79 articles.

1. Recurrent residual convolutional neural network based on u‐net (r2u‐net) for medical image segmentation;Alom M. Z.;arXiv preprint,2018

2. Improving National Air Quality Forecasts with Satellite Aerosol Observations

3. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI)

4. The Computation of Equivalent Potential Temperature

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3