Affiliation:
1. Department of Atmospheric Sciences University of Washington Seattle WA USA
2. Atmospheric Chemistry and Dynamics Laboratory NASA Goddard Space Flight Center Greenbelt MD USA
Abstract
AbstractWe examine the distribution of aerosol optical depth (AOD) across 27,707 northern hemisphere (NH) midlatitude cyclones for 2005–2018 using retrievals from the Moderate Resolution Spectroradiometer (MODIS) sensor on the Aqua satellite. Cyclone‐centered composites show AOD enhancements of 20%–45% relative to background conditions in the warm conveyor belt (WCB) airstream. Fine mode AOD accounts for 68% of this enhancement annually. Relative to background conditions, coarse mode AOD is enhanced by more than a factor of two near the center of the composite cyclone, co‐located with high surface wind speeds. Within the WCB, MODIS AOD maximizes in spring, with a secondary maximum in summer. Cyclone‐centered composites of AOD from the Modern Era Retrospective analysis for Research and Applications, version 2 Global Modeling Initiative (M2GMI) simulation reproduce the magnitude and seasonality of the MODIS AOD composites and enhancements. M2GMI simulations show that the AOD enhancement in the WCB is dominated by sulfate (37%) and organic aerosol (25%), with dust and sea salt each accounting for 15%. MODIS and M2GMI AOD are 60% larger in North Pacific WCBs compared to North Atlantic WCBs and show a strong relationship with anthropogenic pollution. We infer that NH midlatitude cyclones account for 355 Tg yr−1 of sea salt aerosol emissions annually, or 60% of the 30–80°N total. We find that deposition within WCBs is responsible for up to 35% of the total aerosol deposition over the NH ocean basins. Furthermore, the cloudy environment of WCBs leads to efficient secondary sulfate production.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献