Size‐Dependent Nighttime Formation of Particulate Secondary Organic Nitrates in Urban Air

Author:

Huang Wei1,Huang Ru‐Jin123ORCID,Duan Jing1,Lin Chunshui1ORCID,Zhong Haobin12,Xu Wei1,Gu Yifang12,Ni Haiyan1,Chang Yunhua4ORCID,Wang Xuan5ORCID

Affiliation:

1. State Key Laboratory of Loess Science Institute of Earth Environment Chinese Academy of Sciences Xi'an China

2. University of Chinese Academy of Sciences Beijing China

3. Institute of Global Environmental Change Xi'an Jiaotong University Xi'an China

4. Yale‐NUIST Center on Atmospheric Environment Nanjing University of Information Science and Technology Nanjing China

5. School of Energy and Environment City University of Hong Kong Hong Kong China

Abstract

AbstractParticulate secondary organic nitrates play a key role in understanding secondary organic aerosol production, ozone formation, and the atmospheric nitrogen cycle. However, the formation of particulate secondary organic nitrates in ambient air remains poorly understood. In this study, the nighttime formation processes of particulate secondary organic nitrates were investigated based on size‐resolved aerosols measured in urban air of China with a soot particle long‐time‐of‐flight aerosol mass spectrometer. The results show a bimodal size distribution of particulate secondary organic nitrates, peaking at ∼350 nm in condensation mode (100–400 nm) and ∼750 nm in droplet mode (400–2,500 nm), respectively. The nighttime formation processes of particulate secondary organic nitrates in the two size modes were respectively governed by temperature‐dependent condensation and aqueous‐phase processing. In particular, the mass concentration of particulate secondary organic nitrates in condensation mode was positively correlated with nitrate radical production and negatively correlated with temperature, suggesting that the formation processes were associated with the gas‐particle conversion of nitrate radical oxidation products. In contrast, the enhanced particulate secondary organic nitrates in droplet mode were predominantly contributed by aqueous‐phase processing, as indicated by the strong positive correlation with aerosol liquid water content and typical fragment ions from aqueous processing products (r = 0.52–0.59, P < 0.01). Our results highlight the potential of a size‐dependent mechanism to elucidate the formation processes of particulate secondary organic nitrates.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3