Impact of Parameterized Topographic Drag on a Simulated Northeast China Cold Vortex

Author:

Xu Xin12ORCID,Li Mingshan1ORCID,Zhong Shuixin3ORCID,Wang Yuan1ORCID

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric Sciences Nanjing University Nanjing China

2. China Meteorological Administration Radar Meteorology Key Laboratory China Meteorological Administration Nanjing China

3. Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction Institute of Tropical and Marine Meteorology Guangzhou China

Abstract

AbstractNortheast China cold vortex (NECV) is the major influencing weather system in northern China. Yet the impacts of complex terrain on the evolution of NECV remains poorly understood. This work studies the influence of subgrid orographic drag (SOD) on a heavy‐rain‐producing NECV occurred in July 2011 using the Weather Research and Forecasting model. A series of numerical experiments are conducted with different parameterizations of SOD including turbulent orographic form drag (TOFD), flow blocking drag (FBD), and mountain wave drag (MWD). Results show that the NECV intensity is overestimated in the absence of SOD parameterization, accompanied with too‐low geopotential height (GPH) and too‐strong horizontal winds. The parameterization of TOFD can significantly decelerate the 10‐m winds, whereas the FBD and MWD play a minor role. However, the influence of TOFD is overwhelmed by FBD and MWD in the troposphere, especially the latter. This implies that the breaking of mountain waves play a more important role in weakening the NECV than the low‐level flow blocking. The lower‐tropospheric MWD directly weakens the convergence and ascent motion of the NECV, producing an anti‐cyclonic circulation that uplifts the GPH under the constraint of quasi‐geostrophic vertical vorticity. This MWD‐induced circulation indirectly weakens the NECV in the mid‐upper troposphere by producing a warm advection that counters the low‐level cold advection to the southwest of the NECV. The findings provide useful insights into the impacts of complex terrain on the NECV and highlight the importance of topographic drag parameterization in the simulation and short‐range forecast of NECV.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3