Grid Spacing Sensitivities of Simulated Mid‐Latitude and Tropical Mesoscale Convective Systems in the Convective Gray Zone

Author:

Ramos‐Valle A. N.1ORCID,Prein A. F.1ORCID,Ge M.1,Wang D.2ORCID,Giangrande S. E.2ORCID

Affiliation:

1. National Center for Atmospheric Research Boulder CO USA

2. Brookhaven National Laboratory Upton NY USA

Abstract

AbstractThe main objective of this study is to observationally constrain processes in tropical and midlatitude mesoscale convective systems (MCSs), and to use these constraints for model evaluation. To accomplish this, we leverage MCS observations collected at the U.S. DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Oklahoma and ARM's mobile GoAmazon2014/15 site in Manaus, Brazil (MAO). We simulate 13 and 11 of these observed MCSs at the SGP and MAO site, respectively, using the Weather Research and Forecasting model at 12‐, 4‐, 2‐, and 1‐km horizontal grid spacing. Observations from radiosondes, surface meteorology, and radar wind profilers are used to characterize MCS properties, such as MCS timing and location, cold pools, and convective drafts, and evaluate these simulations. SGP cases are found in better agreement with observations than MAO cases, and when simulated at 2 km, outperform simulations at 1 km regarding the timing of MCS overpass and the accuracy of surface variable trends. MAO simulations suggest a consistent improvement in model accuracy with increasing model resolution in depicting the downdraft structure, the timing of MCSs, and the surface variables changes, except for the latter two metrics at 2 km. Deficiencies are still evident at km‐scales, suggesting the need for higher resolution to simulate tropical MCSs. Overall, location‐dependent improvements in MCS representation are obtained with the increasing model resolution, prompting the evaluation of sub‐km scale simulations.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3