Does Increasing Climate Model Horizontal Resolution Be Beneficial for the Mediterranean Region?: Multimodel Evaluation Framework for High‐Resolution Model Intercomparison Project

Author:

Mishra Alok Kumar1ORCID,Jangir Babita1ORCID,Strobach Ehud1

Affiliation:

1. Institute of Soil, Water & Environmental Sciences Volcani Institute Agriculture Research Organisation Rishon LeZion Israel

Abstract

AbstractThe Mediterranean region (MR) is one of the climate change hot spots, posing serious threats to society. The insufficient resolution of the global climate models limits their capability to resolve the complex topography over MR, resulting in a large bias in climate variables. This study examines the performance of four Coupled Model Intercomparison Project phase six models from the High‐Resolution Model Intercomparison Project (HighResMIP) in reproducing the Mediterranean climate. A special focus is put on the role of oceanic and atmospheric model horizontal resolution and spread among the models. Various aspects, relevant to air‐sea interactions and precipitation are examined, including the mean, extremes, and associated mechanisms. All HighResMIP models reasonably well capture the large‐scale oceanic and atmospheric characteristics, but there is a sizable model‐to‐model difference. The Hadley Centre Global Environment Model and European Centre for Medium‐Range Weather Forecasts generally perform better than the other models at comparable atmospheric and oceanic horizontal resolutions. A finer oceanic resolution improves the representation not only of oceanic characteristics (i.e., sea surface temperature, SST) but also of the atmospheric processes (wind and precipitation). Likewise, increasing atmospheric model resolution benefits various atmospheric and ocean characteristics. Over some sub‐basins of the Mediterranean Sea, the intensification of surface wind speed results in the deepening of the ocean's mixed layer leading to cooling, indicating negative feedback in Wind‐SST. In contrast, in other regions, the warmer SST results in the intensification of wind (positive feedback in Wind‐SST).

Funder

Israel Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3