Significant Northward Jump of the Western Pacific Subtropical High: The Interannual Variability and Mechanisms

Author:

Wang Yaning1,Hu Haibo1ORCID,Ren Xuejuan1ORCID,Yang Xiu‐Qun1ORCID,Mao Kefeng2ORCID

Affiliation:

1. China Meteorological Administration Key Laboratory for Climate Prediction Studies School of Atmospheric Sciences Nanjing University Nanjing China

2. College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha China

Abstract

AbstractThe intensity and position of the western Pacific subtropical high (WPSH) have crucial effects on climate and disaster events in East Asia during summer. The WPSH significant northward jump (SNJ) events are the main manifestation of the seasonal evolution of WPSH, which are important for the precipitation over East Asia. Using the daily reanalysis data sets from year 1979 to 2020, this study further defines the early and late SNJ events of WPSH on the interannual timescale, which are connected separately with the tropical, midlatitude subseasonal signals and the local air–sea interaction. However, the mechanisms of the WPSH‐SNJ events are different in the anomalous early and late years. In the early SNJ years, the subseasonal signals from the midlevel East Asia–Pacific teleconnection pattern or the low‐level boreal summer intraseasonal oscillation cause the positive 500 hPa geopotential height anomalies, which contributes to the significant WPSH northward jump in the first pentad of July. However, the above factors are unable to cause the WPSH‐SNJ in the late years. Until the second pentad of August, the collaborative effects between midhigh latitudes wave trains over high levels and cold sea surface temperature (SST) anomalies in the core region lead to the barotropic geopotential height anomalies and the lagged northward jump of WPSH. It seems that the meridional position of WPSH has a complex interannual variability, which is modulated by the solar radiation, the atmospheric disturbances at different levels, and the SST anomalies at the same time.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3