Predicting Tropical Cyclone‐Induced Sea Surface Temperature Responses Using Machine Learning

Author:

Cui Hongxing12ORCID,Tang Danling1ORCID,Mei Wei3ORCID,Liu Hongbin12ORCID,Sui Yi14ORCID,Gu Xiaowei5ORCID

Affiliation:

1. Guangdong Remote Sensing Center for Marine Ecology and Environment Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China

2. Department of Ocean Science Hong Kong University of Science and Technology Hong Kong China

3. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill NC USA

4. Department of Oceanography Dalhousie University Halifax NS Canada

5. School of Computing University of Kent Canterbury UK

Abstract

AbstractThis study proposes to construct a model using random forest method, an efficient machine learning‐based method, to predict the spatial structure and temporal evolution of the sea surface temperature (SST) cooling induced by northwest Pacific tropical cyclones (TCs), a process of the so‐called wind pump. The predictors in use include 12 predictors related to TC characteristics and pre‐storm ocean conditions. The model is shown to skillfully predict the spatiotemporal evolutions of the cold wake generated by TCs of different intensity groups, and capture the cross‐case variance in the observed SST response. Another model is further built based on the same method to assess the relative importance of the 12 predictors in determining the magnitude of the maximum cooling. Computations of feature scores of those predictors show that TC intensity, translation speed and size, and pre‐storm mixed layer depth and SST dominate, depending on the area where the cooling is considered.

Funder

Natural Science Foundation of Guangdong Province

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3