Affiliation:
1. Laboratory of Radar Remote Sensing School of Geosciences and Info‐Physics Central South University Changsha China
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring Central South University Changsha China
3. School of Geography and Environment Jiangxi Normal University Nanchang China
Abstract
AbstractWe derive the ALOS‐2 coseismic interferograms, pixel‐offsets and Sentinel‐2 sub‐pixel offsets of the 2023 Mw7.8 and Mw7.7 Kahramanmaras, Turkey earthquake sequence. Offset maps show that the sequence ruptured ∼300 km along the East Anatolian Fault (EAF) and ∼180 km along the secondary Cardak and Dogansehir faults. We infer the coseismic slip distribution and interseismic fault motion by inverting the co‐ and inter‐seismic observations. Inversion results show that the coseismic slip (∼8.0 m) and interseismic strike‐slip rate (∼4.6 mm/yr) on the main rupture of the Mw7.8 event are basically consistent with the ∼8.4 m and ∼3.9 mm/yr of the Mw7.7 event. Most coseismic slips of the Mw7.8 and Mw7.7 events occur within 10 and 12 km at depth, respectively, in keeping with the interseismic locking depth of 10.4 ± 3.3 km and 11.1 ± 3.1 km. This implies that the coseismic rupture kinematics correlate with the interseismic strain accumulation. Moreover, static stress changes show that the Mw7.7 event is likely promoted by ∼2 bar stress increase from the Mw7.8 event on the central section of its main rupture.
Funder
Fundamental Research Funds for Central Universities of the Central South University
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献