Satellite Video Remote Sensing for Estimation of River Discharge

Author:

Masafu Christopher1ORCID,Williams Richard1ORCID,Hurst Martin D.1ORCID

Affiliation:

1. School of Geographical and Earth Sciences University of Glasgow Glasgow UK

Abstract

AbstractWe demonstrate that river discharge can be estimated by deriving water surface velocity estimates from satellite‐derived video imagery when combined with high‐resolution topography of channel geometry. Large Scale Particle Image Velocimetry (LSPIV) was used to map surface velocity from 28 s of 5 Hz satellite video acquired at a 1.2 m nominal ground spacing over the Darling River, Tilpa, Australia, during a 1‐in‐5‐year flood. We stabilized and assessed the uncertainty of the residual motion induced by the satellite platform, enhancing our sub‐pixel motion analysis, and quantified the sensitivity of image extraction rates on computed velocities. In the absence of in situ observations, LSPIV velocity estimates were validated against predictions from a calibrated 2D hydrodynamic model. Despite the confounding influence of selecting a surface velocity depth‐averaging coefficient, inference of discharge was within 0.3%–15% compared with gauging station measurements. These results provide a valuable foundation for refining satellite video LSPIV techniques.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3