Three‐Dimensional Magnetic Reconnection Spreading in Current Sheets of Non‐Uniform Thickness

Author:

Arencibia Milton1ORCID,Cassak Paul A.1ORCID,Shay Michael A.2ORCID,Qiu Jiong3ORCID,Petrinec Steven M.4ORCID,Liang Haoming5ORCID

Affiliation:

1. Department of Physics and Astronomy and Center for KINETIC Plasma Physics West Virginia University Morgantown WV USA

2. Department of Physics and Astronomy University of Delaware Newark DE USA

3. Department of Physics Montana State University Bozeman MT USA

4. Lockheed Martin Advanced Technology Center Palo Alto CA USA

5. Center for Space Plasma and Aeronomic Research (CSPAR) University of Alabama in Huntsville Huntsville AL USA

Abstract

AbstractMagnetic reconnection in naturally occurring and laboratory settings often begins locally and elongates, or spreads, in the direction perpendicular to the plane of reconnection. Previous work has largely focused on current sheets with a uniform thickness, for which the predicted spreading speed for anti‐parallel reconnection is the local speed of the current carriers. We derive a scaling theory of three‐dimensional (3D) spreading of collisionless anti‐parallel reconnection in a current sheet with its thickness varying in the out‐of‐plane direction, both for spreading from a thinner to thicker region and a thicker to thinner region. We derive an expression for calculating the time it takes for spreading to occur for a current sheet with a given profile of its thickness. A key result is that when reconnection spreads from a thinner to a thicker region, the spreading speed in the thicker region is slower than both the Alfvén speed and the speed of the local current carriers by a factor of the ratio of thin to thick current sheet thicknesses. This is important because magnetospheric and solar observations have previously measured the spreading speed to be slower than previously predicted, so the present mechanism might explain this feature. We confirm the theory via a parametric study using 3D two‐fluid numerical simulations. We use the prediction to calculate the time scale for reconnection spreading in Earth's magnetotail during geomagnetic activity. The results are also potentially important for understanding reconnection spreading in solar flares and the dayside magnetopause of Earth and other planets.

Funder

National Science Foundation

U.S. Department of Energy

NASA Headquarters

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3