Solar Flux Dependence of Upper Thermosphere Diurnal Variations: Observed and Modeled

Author:

Thayer Jeffrey P.12ORCID,Waldron Zachary C.2,Sutton Eric K.2ORCID

Affiliation:

1. Aerospace Engineering Sciences Department University of Colorado Boulder Boulder CO USA

2. Space Weather Technology, Research, and Education Center University of Colorado Boulder Boulder CO USA

Abstract

AbstractUpper thermosphere mass density over the declining phase of solar cycle 23 is investigated using a day‐to‐night ratio (DNR) of thermosphere properties to evaluate how much relative change occurs climatologically between day and night. Challenging Minisatellite Payload (CHAMP) observations from 2002 to 2009, MSIS 2.0 output, and TIEGCM V2.0 simulations are analyzed to assess their relative response in DNR. The CHAMP observations demonstrate nightside densities decrease more significantly than dayside densities as solar flux decreases. This causes a steadily increasing CHAMP mass density DNR from around two to greater than four with decreasing solar flux. The MSIS 2.0 nightside densities decrease, with decreasing solar flux, more significantly than the dayside, resulting in the same trend as CHAMP. TIEGCM V2.0 displays an opposite trend in density DNR with decreasing solar flux due to dayside densities decreasing more significantly than nightside densities. A sensitivity analysis of the two models reveals the TIEGCM V2.0 to have greater sensitivity in temperature to levels of solar flux, while MSIS 2.0 displayed a greater sensitivity in mean molecular weight. The pressure DNR from both models contributed the most to the density DNR value at 400 km. As solar flux decreases, the two models' estimate of pressure DNR deviate appreciably and trend in opposite directions. The TIEGCM V2.0 dayside temperatures during middle‐to‐low solar flux are too cold relative to MSIS 2.0. Increasing the dayside temperature values by about 50–100 K and decreasing the nightside temperature slightly would bring the TIEGCM V2.0 into better agreement with MSIS 2.0 and CHAMP observations.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3