Affiliation:
1. Space Physics and Astronomy Research Unit and Sodankylä Geophysical Observatory University of Oulu Oulu Finland
2. Department of Geology‐Quaternary Sciences Lund University Lund Sweden
3. British Antarctic Survey, Ice Dynamics and Paleoclimate Cambridge UK
4. Ioffe Physical‐Technical Institute RAS St. Petersburg Russia
Abstract
AbstractExtreme solar particle events (ESPEs) are rare and the most potent known processes of solar eruptive activity. During ESPEs, a vast amount of cosmogenic isotopes (CIs) 10Be, 36Cl, and 14C can be produced in the Earth's atmosphere and deposited in natural stratified archives. Accordingly, CI measurements in these archives allow us to evaluate particle fluxes during ESPEs. In this work, we present a new method of ESPE fluence (integral flux) reconstruction based on state‐of‐the‐art modeling advances, allowing to fit together different CI data within one model. We represent the ESPE fluence as an ensemble of scaled fluence reconstructions for ground‐level enhancement (GLE) events registered by the neutron monitor network since 1956 coupled with satellite and ionospheric measurements data. Reconstructed ESPE fluences appear softer in its spectral shape than earlier estimates, leading to significantly higher estimates of the low‐energy (E < 100 MeV) fluence. This makes ESPEs even more dangerous for modern technological systems than previously believed. Reconstructed ESPE fluences are fitted with a modified Band function, which eases the use of obtained results in different applications.
Funder
Kungliga Fysiografiska Sällskapet i Lund
Academy of Finland
Oulun Yliopisto
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献