Wavelike Oscillations in High Latitude Thermospheric Doppler Temperature and Line‐Of‐Sight Wind Observed Using All‐Sky Imaging Fabry‐Perot Spectrometers

Author:

Itani R.1ORCID,Conde M.1ORCID

Affiliation:

1. Geophysical Institute University of Alaska Fairbanks Fairbanks AK USA

Abstract

AbstractMultiple years of thermospheric wind and temperature data were examined to study gravity waves in Earth's thermosphere. Winds and temperatures were measured using all‐sky imaging optical Doppler spectrometers deployed at two sites in Alaska, and three in Antarctica. For all sites, oscillatory perturbations were clearly present in high‐pass temporally filtered F‐region line‐of‐sight (LOS) winds for the majority of the clear‐sky nights. Oscillations were also discernible in E‐region LOS wind and F‐region Doppler temperature, albeit less frequently. Oscillation amplitudes correlated strongly with auroral and geomagnetic activity. Observed wave signatures also correlated strongly between geographically nearby observing sites. Amplitudes of LOS wind oscillations were usually small when viewed in the zenith and increased approximately with the sine of the zenith angle—as expected if the underlying motion is predominantly horizontal. Scanning Doppler Imager instruments observe in many look directions simultaneously. Phase relationships between perturbations observed in different look directions were used to identify time intervals when the oscillations were likely to be due to traveling waves. However, a number of instances were noted in which the oscillations had characteristics suggesting geophysical mechanisms other than traveling waves—a recognition that was only possible because of the large number of look directions. Lomb‐Scargle analysis was used on a representative subset of days to resolve the spectral distributions of the wind and temperature oscillations. F‐region wind oscillations on days analyzed this way exhibited periods typically ranging from 60 min and above. By contrast, E‐region wind oscillation periods were as short as 30 min.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3