On the Dynamical Importance of Gravity Wave Sources Distributed Over Different Heights in the Atmosphere

Author:

Medvedev Alexander S.1ORCID,Klaassen Gary P.2ORCID,Yiğit Erdal3ORCID

Affiliation:

1. Max Planck Institute for Solar System Research Göttingen Germany

2. Department of Earth and Space Science and Engineering York University Toronto ON Canada

3. Department of Physics and Astronomy George Mason University Fairfax VA USA

Abstract

AbstractGravity waves (GWs) are generated at all altitudes in the atmosphere, but sources above the lower stratosphere are rarely considered by parameterizations employed in general circulation models. This study assesses the potential impact on the thermosphere produced by small‐scale waves originating at different heights. Within the proposed numerical framework, GW sources are represented by wave momentum forcing, whose values are expressed relative to the forcing required to obtain typical wave spectra around the tropopause. The relative importance of tropospheric and extra‐tropospheric sources and the response in the thermosphere are studied in a series of sensitivity experiments. They demonstrate that the accumulation of wave momentum steeply drops with height as a consequence of decreasing density, even when the forcing is maintained at a uniform level throughout the middle atmosphere. When a broad spectrum is forced at twice the tropospheric rate, the thermospheric drag is increased by only a factor of two, and that increase is produced by waves that were forced in the lower stratosphere. With increasing altitude, vertically localized sources contribute progressively less. For example, for GWs excited near the mesopause to produce an impact comparable with that due to waves propagating from below, the forcing must be orders of magnitude stronger than in the troposphere. The estimated forcing of the so‐called secondary harmonics by breaking primary waves is much weaker, such that the systematic dynamical effect of secondary waves in the thermosphere is negligible compared to that of the primary GWs generated in the troposphere.

Funder

Earth Sciences Division

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric Wave Radiation by Vibrations of an Ice Shelf;Journal of Geophysical Research: Atmospheres;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3