Affiliation:
1. Korea Polar Research Institute Incheon Republic of Korea
2. University of Science and Technology Daejeon Republic of Korea
3. High Altitude Observatory National Center for Atmospheric Research Boulder CO USA
4. Korea Astronomy and Space Science Institute Daejeon Republic of Korea
5. Yonsei University Seoul Republic of Korea
6. Chungnam National University Daejeon Republic of Korea
Abstract
AbstractThe ionospheric density displays hemispheric asymmetries in the polar region due to various hemispheric differences, for example, in the offset between geographic and geomagnetic poles and in the geomagnetic field strength. Using ground‐based ionospheric measurements from Vertical Incidence Pulsed Ionospheric Radar with Dynasonde analysis at Jang Bogo Station (JBS), Antarctica and from EISCAT Svalbard Radar (ESR) where both sites are located mostly in the polar cap, we investigate the hemispheric differences in the ionospheric density between the northern and southern hemispheres for geomagnetically quiet and solar minimum condition. The results are also compared with Thermosphere Ionosphere Electrodynamic Global Circulation Model (TIEGCM) simulations. The observations show larger density and stronger diurnal and seasonal variations at JBS in the southern hemisphere than at Svalbard in the northern hemisphere. The diurnal variations of the density peak height are also observed to be much larger at JBS. In both hemispheres, the ionospheric density is significantly reduced in winter due to the limited solar production at high geographic latitudes, but TIEGCM considerably overestimates winter density, which is even larger than summer density, especially in the northern hemisphere. Also existed are the differences in the equinoctial asymmetry between the observations and the simulations: the daytime F‐region density is observed to be larger in fall than in spring in both hemispheres, but TIEGCM shows the opposite. In general, most of the observed asymmetrical density are much weaker in the model simulation, which may result from lack of proper magnetospheric forcings and neutral dynamics in the model.
Funder
Korea Polar Research Institute
Korea Astronomy and Space Science Institute
National Science Foundation
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献