Wave and Particle Analysis of Z‐Mode and O‐Mode Emission in the Jovian Inner Magnetosphere

Author:

Menietti J. D.1ORCID,Yoon P. H.2ORCID,Averkamp T. F.1ORCID,Kurth W. S.1ORCID,Faden J. B.1,Allegrini F.34ORCID,Kollmann P.5ORCID,Bolton S. J.3

Affiliation:

1. Department of Physics and Astronomy University of Iowa Iowa City IA USA

2. Institute for Physical Science and Technology University of Maryland College Park MD USA

3. Southwest Research Institute San Antonio TX USA

4. Physics and Astronomy Department University of Texas at San Antonio San Antonio TX USA

5. Applied Physics Laboratory The Johns Hopkins University Laurel MD USA

Abstract

AbstractWe report some of the most intense Z‐mode and O‐mode observations obtained by the Juno spacecraft while in orbit about Jupiter in a low to mid‐latitude region near the inner edge of the Io torus. We have been able to estimate the density of the plasma in this region based on the lower frequency cutoff of the observed Z‐mode emission. The results are compatible with the electron density measurements of the Jovian Auroral Distributions Experiment (JADE), on board the Juno spacecraft, if we account for unmeasured cold plasma. Direction‐finding measurements indicate that the Z‐ and O‐mode emission have distinct source regions. We have also used the measured phase space density of the JADE and the Jupiter energetic particle detector instruments to calculate estimated local growth rates of the observed O‐mode and Z‐mode emission assuming a loss cone instability and quasilinear analysis. The results suggest the emissions were observed near, but not within, a source region, and the free energy source is consistent with a loss cone. We have thus carried out the quasilinear wave analysis of the assumed remote Z‐ and O‐mode wave growths. It is shown that the remotely generated waves, propagated through an inhomogeneous medium to the satellite location, may account for the observed wave characteristics. The importance of Z‐mode in accelerating electrons in the inner Jovian magnetosphere makes these new wave mode confirmations at Jupiter of particular interest.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey and Analysis of Whistler‐ and Z‐Mode Emission in the Juno Extended Mission;Journal of Geophysical Research: Space Physics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3