Long‐Term Trends in the Upper Atmosphere Using the Incoherent Scatter Radar Observations Over Arecibo

Author:

Selvaraj D.1ORCID,Sulzer Michael P.1ORCID,Zhang Shun‐Rong2ORCID,Brum Christiano G. M.1ORCID

Affiliation:

1. Arecibo Observatory University of Central Florida (UCF) Arecibo PR USA

2. Haystack Observatory Massachusetts Institute of Technology Westford MA USA

Abstract

AbstractUpper atmospheric long‐term trends have been characterized through the analysis of the ionospheric ion temperature (Ti). Previous studies used Ti observations from various incoherent scatter radar (ISR) facilities located at different latitudes. In this paper, we analyze Arecibo Observatory's (AO) ISR (18°20’N, 66°45’W) data sets from 1985 to 2019 to detect Ti long‐term trends as a function of altitude from ∼140 to ∼677 km. We empirically modeled the responses of Ti to the known forcings of solar activity, geomagnetic activity, and the annual and semi‐annual oscillations. The Ti trend is determined through least squares fitting to the residuals of the Ti, which were estimated by removing the empirically modeled Ti from the observed Ti. Since the ions and neutrals are closely coupled, our results indicate that the upper atmosphere/ionosphere over Arecibo has been cooling over the 35 years studied. Above 350 km, a latitudinal dependency is seen by comparison of all ISR estimated Ti trends, which agrees with the earlier reported results. These observed cooling trends exceed the magnitude expected by the modeling studies from increased greenhouse gas (GHG) concentrations. These excess coolings are as high as −1.2 K/year below 320 km altitude, where an increase in GHG dominates. Nighttime cooling trends in the altitude of ∼320–400 km might be caused by the increasing GHG concentrations and magnetic field variations since the trends of AO‐ISR match with the Whole Atmosphere Community Climate Model eXtension simulations.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3