Automated High‐Frequency Geomagnetic Disturbance Classifier: A Machine Learning Approach to Identifying Noise While Retaining High‐Frequency Components of the Geomagnetic Field

Author:

McCuen Brett A.1ORCID,Moldwin Mark B.1ORCID,Steinmetz Erik S.2,Engebretson Mark J.2ORCID

Affiliation:

1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

2. Department of Physics Augsburg University Minneapolis MN USA

Abstract

AbstractWe present an automated method to identify high‐frequency geomagnetic disturbances in ground magnetometer data and classify the events by the source of the perturbations. We developed an algorithm to search for and identify changes in the surface magnetic field, dB/dt, with user‐specified amplitude and timescale. We used this algorithm to identify transient‐large‐amplitude (TLA) dB/dt events that have timescale less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time characteristics to instrumental or man‐made noise, the algorithm identified a large number of noise‐type signatures as well as geophysical signatures. We manually classified these events by their sources (noise‐type or geophysical) and statistically characterized each type of event; the insights gained were used to more specifically define a TLA geophysical event and greatly reduce the number of noise‐type dB/dt identified. Next, we implemented a support vector machine classification algorithm to classify the remaining events in order to further reduce the number of noise‐type dB/dt in the final data set. We examine the performance of our complete dB/dt search algorithm in widely used magnetometer databases and the effect of a common data processing technique on the results. The automated algorithm is a new technique to identify geomagnetic disturbances and instrumental or man‐made noise, enabling systematic identification and analysis of space weather related dB/dt events and automated detection of magnetometer noise intervals in magnetic field databases.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3