Affiliation:
1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA
2. Department of Physics Augsburg University Minneapolis MN USA
Abstract
AbstractWe present an automated method to identify high‐frequency geomagnetic disturbances in ground magnetometer data and classify the events by the source of the perturbations. We developed an algorithm to search for and identify changes in the surface magnetic field, dB/dt, with user‐specified amplitude and timescale. We used this algorithm to identify transient‐large‐amplitude (TLA) dB/dt events that have timescale less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time characteristics to instrumental or man‐made noise, the algorithm identified a large number of noise‐type signatures as well as geophysical signatures. We manually classified these events by their sources (noise‐type or geophysical) and statistically characterized each type of event; the insights gained were used to more specifically define a TLA geophysical event and greatly reduce the number of noise‐type dB/dt identified. Next, we implemented a support vector machine classification algorithm to classify the remaining events in order to further reduce the number of noise‐type dB/dt in the final data set. We examine the performance of our complete dB/dt search algorithm in widely used magnetometer databases and the effect of a common data processing technique on the results. The automated algorithm is a new technique to identify geomagnetic disturbances and instrumental or man‐made noise, enabling systematic identification and analysis of space weather related dB/dt events and automated detection of magnetometer noise intervals in magnetic field databases.
Funder
National Science Foundation
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献