Substorm Influences on Plasma Pressure and Current Densities Inside the Geosynchronous Orbit

Author:

Fu Haobo12ORCID,Yue Chao1ORCID,Zong Q.‐G.12ORCID,Zhou XuZhi1ORCID,Yu Yiqun3,Li Yuxuan12ORCID,Liu Jianjun2ORCID,Hu Zejun2ORCID,Yang Huigen2ORCID,Reeves Geoffrey D.4,Spence Harlan E.5ORCID,Gerrard Andrew J.6ORCID,Gkioulidou Matina7ORCID,Mitchell Donald G.7ORCID

Affiliation:

1. Institute of Space Physics and Applied Technology Peking University Beijing China

2. MNR Key Laboratory for Polar Science Polar Research Institute of China Shanghai China

3. School of Space and Environment Beihang University Beijing China

4. Los Alamos National Laboratory Los Alamos NM USA

5. University of New Hampshire Durham NH USA

6. Center for Solar‐Terrestrial Research New Jersey Institute of Technology Newark NJ USA

7. The Johns Hopkins University Applied Physics Laboratory Laurel MD USA

Abstract

AbstractPlasma in the inner magnetosphere is affected by various processes, such as substorms. In this study, we have statistically investigated the ring current properties based on the observations of Van Allen Probes from 2012 to 2019 to examine the substorm effects on the plasma pressure and current system in the inner magnetosphere. The results show that the plasma pressure increases significantly, leading to a ∼3 nT/hr geomagnetic depression during intense substorms. The contribution of <100 keV H+ ions to the plasma pressure increases during substorms, which is more significant at lower L‐shells. Opposite to the H+ ions, the proportion of >10 keV O+ ions contributing to the plasma pressure increases as substorm intensity increases. In addition, the rise of plasma pressure is mainly distributed from dusk to midnight, resulting in the enhancement of asymmetric ring current and the region II field‐aligned currents connecting to the ionosphere. Our results provide a comprehensive view of the variation of plasma pressure and current system in the inner magnetosphere during quiet periods and intense substorms.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3