Exploring the Predictability of the High‐Energy Tail of MEE Precipitation Based on Solar Wind Properties

Author:

Salice J. A.1ORCID,Nesse H.1ORCID,Babu E. M.1ORCID,Smith‐Johnsen C.1ORCID,Richardson I. G.23ORCID

Affiliation:

1. Birkeland Centre for Space Science Department of Physics and Technology University of Bergen Bergen Norway

2. Heliophysics Science Division NASA Goddard Space Flight Center Greenbelt MD USA

3. Department of Astronomy University of Maryland College Park MD USA

Abstract

AbstractMedium Energy Electron (MEE) precipitation (≳30 keV) ionizes the mesosphere and initiates chemical reactions, which ultimately can reduce mesospheric and stratospheric ozone. Currently, there are considerable differences in how existing parameterizations represent flux response, timing, and duration of MEE precipitation, especially considering its high‐energy tail (≳300 keV). This study compares the nature of ≳300 to ≳30 keV electron fluxes to better understand differences within MEE precipitation. The MEE fluxes are estimated from measurements by the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) from 2004 to 2014. The fluxes are explored in the context of solar wind drivers: corotating high‐speed solar wind streams (HSSs) and coronal mass ejections (CMEs) alongside their associated solar wind properties. Three key aspects of ≳300 keV electron fluxes are investigated: maximum response, peak timing, and duration. The results reveal a structure‐dependent correlation (0.89) between the peak fluxes of ≳30 and ≳300 keV electrons. The epsilon coupling function correlates well (0.84) with the ≳300 keV peak flux, independent of solar wind structure. The ≳300 keV flux peaks 0–3 days after the ≳30 keV flux peaks. The highest probability (∼42%) occurs for a 1‐day delay, while predictive capabilities increase when accounting for solar wind speed. The ≳300 keV flux response has the highest probability of lasting 4 days for both CMEs and HSSs. The results form a base for a stochastic MEE parameterization that goes beyond the average picture, enabling realistic flux variability on both daily and decadal scales.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3