Biomarker Reconstruction of a High‐Latitude Late Paleocene to Early Eocene Coal Swamp Environment Across the PETM and ETM‐2 (Ellesmere Island, Arctic Canada)

Author:

Blumenberg Martin1ORCID,Naafs B. David A.2ORCID,Lückge Andreas1,Lauretano Vittoria2ORCID,Schefuß Enno3ORCID,Galloway Jennifer M.4ORCID,Scheeder Georg1,Reinhardt Lutz1ORCID

Affiliation:

1. Federal Institute for Geosciences and Natural Resources (BGR) Hannover Germany

2. Organic Geochemistry Unit (OGU) School of Chemistry University of Bristol Bristol UK

3. MARUM—Center for Marine Environmental Sciences University of Bremen Bremen Germany

4. Geological Survey of Canada Calgary AB Canada

Abstract

AbstractThe Paleocene‐Eocene Thermal Maximum (PETM) and early Eocene hyperthermal events were characterized by a Hothouse climate state. Our understanding of the climatic impact of these hyperthermals is currently biased toward marine settings and the mid‐latitudes. Here we present organic geochemical data from Stenkul Fiord, Ellesmere Island, Arctic Canada. This organic rich formation was deposited in a high northern latitude wetland setting during the late Paleocene to early Eocene, spanning the PETM and subsequent ETM‐2 hyperthermals. Biomarker data (e.g., diterpenoids), combined with published palynological data from the site, indicate Cupressaceae‐dominated vegetation. Biomarkers suggest that land plant composition remained fairly unchanged across the two hyperthermal events. Increases in abundance and 13C‐depletion of hopanoid biomarkers (minima <−50‰ (VPDB)) highlight periods of enhanced bacterial methane consumption, particularly during the PETM. However, periods of low hopanoid δ13C values were also found outside the hyperthermal intervals. Relatively low δ2H values of higher plant n‐alkanes (average δ2H values of n‐C25, n‐C27, n‐C29 ∼ −230 to −270‰ (SMOW)) indicate that deposition formed during times with enhanced precipitation. The wettest intervals, as identified by the lowest δ2H n‐alkane values, contain high abundances of hopenes, indicating enhanced bacterial turnover. At Stenkul Fiord, high temperatures and CO2 concentrations likely fostered the growth of widespread wetland forests that became a CO2 sink and may have played an important role in carbon drawdown during the Early Paleogene.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3