New Insights Into the Surface‐Ocean Dynamics of the Northeastern Atlantic Ocean Across the Marine Isotope Stage 7

Author:

Singh Harshit1,Singh Arun Deo1ORCID

Affiliation:

1. Department of Geology Banaras Hindu University Varanasi India

Abstract

AbstractThe upper water‐column dynamics and surface productivity variability in the Northeastern Atlantic Ocean across the Marine Isotope Stage (MIS) 7 interglacial complex is not well understood. Here, we present high‐resolution planktic foraminiferal proxies combined with Artificial Neural Network based‐sea‐surface temperature (SST) and ice‐rafted detritus records from International Ocean Discovery Program Site U1385, SW Iberian Margin for the intervals representing MIS 8 deglaciation, MIS 7 interglacial complex and MIS 6 glacial inception. The long‐term SST pattern is modulated by insolation and precession parameters across the MIS 7 interglacial complex and is superimposed by the millennial‐scale variability (stadials at ∼250, ∼243, ∼230, ∼221, ∼203, ∼196 and ∼192 ka). The regional SST records indicate high temperature gradient (∼6°C) between the sub‐polar North Atlantic Ocean and the SW Iberian Margin during MIS 7d which enhanced the moisture transport from mid‐to‐high latitudes. Further, low obliquity with low insolation induced cooling at high latitudes and promoted the expansion of ice‐sheets during MIS 7d. Comparison of our faunal proxies with the published marine and terrestrial records from SW Europe and western Mediterranean Sea suggested a weakening and southward shift of Azores High (AH) pressure system, similar to the present‐day (−) NAO‐like atmospheric configuration during the early phases of MIS 7e, MIS 7c and MIS 7a, resulting reduced surface productivity of SW Iberian Margin. During the late phases of MIS 7e, MIS 7c and MIS 7a, the AH pressure system strengthened and shifted northward causing the intensification of the trade winds, a scenario similar to present‐day (+) NAO‐like atmospheric configuration, which resulted in high surface productivity of SW Iberian Margin.

Funder

University Grants Commission

National Centre for Polar and Ocean Research, Ministry of Earth Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3