Extreme Planktic Foraminiferal Dwarfism Across the ETM2 in the Tethys Realm in Response to Warming

Author:

D’Onofrio R.12ORCID,Barrett R.3ORCID,Schmidt D. N.3ORCID,Fornaciari E.4ORCID,Giusberti L.4ORCID,Frijia G.1ORCID,Adatte T.5,Sabatino N.6,Monsuru A.3ORCID,Brombin V.1ORCID,Luciani V.1ORCID

Affiliation:

1. Dipartimento di Fisica e Scienze della Terra Università di Ferrara Ferrara Italy

2. Istituto di Scienze Marine (ISMAR) CNR Venezia Italy

3. School of Earth Sciences University of Bristol Bristol UK

4. Dipartimento di Geoscienze Università di Padova Padova Italy

5. GEOPOLIS ISTE Lausanne University Lausanne Switzerland

6. Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS) CNR Palermo Italy

Abstract

AbstractPronounced warming negatively impacts ecosystem resilience in modern oceans. To offer a long‐term geological perspective of the calcareous plankton response to global warming, we present an integrated record, from two Tethyan sections (northeastern Italy), of the planktic foraminiferal and calcareous nannofossil response to the Eocene Thermal Maximum 2 hyperthermal (ETM2, ∼54 Ma). Our study reveals pronounced changes in assemblage composition and a striking dwarfing of planktic foraminiferal tests of up to 40% during the event, impacting both surface and deeper dwellers. The increased abundance of small placoliths among calcareous nannofossils is interpreted as community size reduction. Literature and our foraminiferal size data from Sites 1263 and 1209 (Atlantic and Pacific Oceans) highlights that the pronounced dwarfism is restricted to the Tethyan area. The ETM2 is characterized by warm sea surface temperatures as indicated by our δ18O data, but this warming is of global extent and cannot explain the unique dwarfism. Excluding evolutionary modifications, other potential drivers of dwarfism (eutrophication, deoxygenation, metabolic adaptation) cannot explain the exceptional dwarfism by themselves. The smallest sizes are in close temporal association with peaks in volcanic derived Hg/Th‐Hg/Rb recorded just before and at the ETM2 which could not have been brought into our sections through weathering. In contrast, size reductions are absent below and above the ETM2 at Hg peaks where δ18O data do not show warm conditions. We speculate that the local input of toxic metals from submarine volcanic emissions could have acted synergistically to warming, causing the unique dwarfism.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3