Climate Induced Thermocline Aging and Ventilation in the Eastern Atlantic Over the Last 32,000 Years

Author:

Beisel Elvira1ORCID,Frank Norbert1ORCID,Robinson Laura F.2ORCID,Lausecker Marleen13ORCID,Friedrich Ronny4ORCID,Therre Steffen1ORCID,Schröder‐Ritzrau Andrea1ORCID,Butzin Martin5ORCID

Affiliation:

1. Institute of Environmental Physics Heidelberg University Heidelberg Germany

2. School of Earth Sciences University of Bristol Bristol UK

3. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany

4. Curt‐Engelhorn‐Center Archaeometry Mannheim Mannheim Germany

5. MARUM‐Center for Marine Environmental Sciences University of Bremen Bremen Germany

Abstract

AbstractThe radiocarbon analysis of uranium‐thorium‐dated cold‐water corals (CWCs) provides an excellent opportunity for qualitative reconstruction of past ocean circulation and water mass aging. While mid‐depth water mass aging has been studied in the Atlantic Ocean, the evolution of the thermocline is still largely unknown. Here we present a combined 14C and 230Th/U age record obtained from thermocline dwelling CWCs at various sites in the eastern Atlantic Ocean, with intermittently centennial resolution over the last 32 ka. Shallow dwelling CWCs off Angola, located in the South Atlantic, infer a link between the mid‐depth equatorial Atlantic and Southern Ocean. They confirm a 14C drawdown during the Last Glacial Maximum (LGM) and advocate for a consistent Southern Hemisphere radiocarbon aging of upper thermocline waters, as well as strong depth gradients and high variability. Direct comparison with 14C simulations carried out with an Ocean General Circulation Model yield good agreement for Angola. In contrast, the North Atlantic thermocline shows well‐ventilated water with strong variations near the position of today's Azores Front (AF), neither of which are captured by the model. During the Bølling‐Allerød, we confirm the important role of the AF in separating North and South Atlantic thermocline waters and provide further evidence of a 500 year long deep convection interruption within the Younger Dryas (YD). We conclude that the North and South Atlantic thermocline waters were separately acting carbon reservoirs during the LGM and subsequent deglaciation until the modern circulation was established during the YD.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cold-Water Coral Reefs in the Oxygen Minimum Zones Off West Africa;Cold-Water Coral Reefs of the World;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3