Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations

Author:

Zhou Xinquan12ORCID,Duchamp‐Alphonse Stéphanie2,Bassinot Franck3,Liu Chuanlian1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

2. Université Paris‐Saclay CNRS GEOPS Orsay France

3. Laboratoire des Sciences du Climat et de l'Environnement CEA/CNRS/UVSQ Université Paris‐Saclay Centre CEA‐Saclay Gif‐sur‐Yvette France

Abstract

AbstractInsolation is the engine of monsoon and Walker circulations over the tropical Indian Ocean. Here, we present Holocene coccolith‐related net primary productivity (NPP) signals from two sediment cores retrieved in the wind‐driven coastal upwelling systems off southern India and southern Sumatra. Upwelling‐induced NPP is enhanced during summer and autumn and is a powerful tool to reconstruct atmospheric features at a seasonal scale. Our records indicate that during summer and autumn, westerly winds off southern India strengthened from the early‐Holocene (EH) to late‐Holocene (LH), while southeasterly winds off southern Sumatra strengthened from the EH to mid‐Holocene (MH) and weakened from the MH to LH. Comparisons with previous paleoclimate records and simulations, allow us to confirm such wind patterns at a regional scale and identify distinct atmospheric features associated to insolation before and after the MH. From the EH to MH, as the insolation in the Northern Hemisphere weakens during summer and strengthens during autumn, the equatorial Indian Ocean is characterized by more vigorous Walker and monsoon circulations in summer and autumn, respectively. From the MH to LH, as the insolation weakens in the Northern Hemisphere during summer and over the equator during autumn, the equatorial Indian Ocean is influenced by a general reinforcement of the Walker circulation during both seasons, a feature that we relate to a modern negative IOD‐like mode. The changes in wind result in increasing precipitation over Indonesia and India from EH to MH and over Indonesia from MH to LH as India is getting dryer.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3