40Ar/39Ar Age Constraints on MIS 5.5 and MIS 5.3 Paleo‐Sea Levels: Implications for Global Sea Levels and Ice‐Volume Estimates

Author:

Marra F.1ORCID,Florindo F.1ORCID,Gaeta M.2ORCID,Jicha B. R.3ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia Rome Italy

2. Dipartimento di Scienze della Terra “Sapienza” Università di Roma Roma Italy

3. Department of Geoscience University of Wisconsin‐Madison Madison WI USA

Abstract

AbstractWe integrate 10 new with five published 40Ar/39Ar age determinations, both on primary volcanic deposits and on detrital sanidine, which provide precise geochronologic control on the Marine Isotope Stage (MIS) 5.5 and MIS 5.3 sea‐level indicators that occur at three coastal caves in a tectonically stable region of the central Tyrrhenian Sea of Italy. The age of a Strombus‐bearing bioclastic conglomerate, associated with a tidal notch occurring at 9.5 m a.s.l. at Cape Circeo, is constrained to between 121.5 ± 5.8 and 116.2 ± 1.2 ka. Moreover, backbeach deposits intercalated in the sedimentary filling of Guattari and Capre coastal caves are directly correlated with a tidal notch at ∼2.5 m associated with another bioclastic conglomerate at Cape Circeo and dated to 110.4 ± 1.4–104.9 ± 0.9 ka. The latter deposit is also correlated with the adjacent marine terrace, occurring at 3–5 m on the coast between Capes Circeo and Anzio, for which a maximum age of 100.7 ± 6.6 ka was previously reported. These data provide evidence for a maximum sea level around 9.5 m above the present sea level and a duration of MIS 5.5 highstand until 116 ka, in agreement with estimates from other regions in the world. In contrast, they suggest a maximum sea level during MIS 5.3 highstand that is similar to the present level, and only ∼7 m lower than the MIS 5.5 highstand, challenging the reconstructions of the MIS 5 ice‐sheet volumes and derived global sea levels that are based on benthic oxygen isotope records.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3