Brazil Margin Stable Isotope Profiles for the Last Glacial Cycle: Implications for Watermass Geometry and Oceanic Carbon Storage

Author:

Shub A. B.1ORCID,Lund D. C.1ORCID,Oppo D. W.2ORCID,Garity M. L.1ORCID

Affiliation:

1. Department of Marine Sciences University of Connecticut Groton CT USA

2. Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractVertical profiles of benthic foraminiferal oxygen and carbon isotopes (δ18O and δ13C) imply the volume of southern source water (SSW) in the Atlantic basin expanded during the Last Glacial Maximum. Shoaling of the boundary between SSW and northern source water (NSW) may reduce mixing between the two watermasses, thereby isolating SSW and enhancing its ability to store carbon during glacial intervals. Here we test this hypothesis using profiles of δ18O and δ13C from the Brazil Margin spanning the last glacial cycle (0–150 ka). Shoaling of the SSW‐NSW boundary occurred during Marine Isotope Stage (MIS) 2, 4, and 6, consistent with expansion of SSW and greater carbon sequestration in the abyss. But the watermass boundary also shoaled during MIS 5e, when atmospheric CO2 levels were comparable to MIS 1. Additionally, we find there was little change in watermass structure across the MIS 5e‐d transition, the first major decline in CO2 of the last glacial cycle. Thus, the overall pattern in glacial‐interglacial geometry is inconsistent with watermass mixing acting as a primary control on atmospheric pCO2. We also find that δ13C values for MIS 5e are systematically lower than MIS 1, with the largest difference (∼1‰) occurring in the upper water column. Low δ13C during MIS 5e was most likely due to a long‐term imbalance in weathering and deposition of calcium carbonate or input of 13C‐depleted carbon from a reservoir external to the ocean‐atmosphere system.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3