Climate Model Simulations of the Effects of Orbital Parameters on Glacier Equilibrium Line Altitude

Author:

O’Neill G. R.1ORCID,Broccoli A. J.1ORCID

Affiliation:

1. Department of Environmental Sciences and Institute of Earth Ocean, and Atmospheric Sciences, Rutgers University New Brunswick NJ USA

Abstract

AbstractThe effects of obliquity and precession on conditions favorable for Northern Hemisphere glaciation are explored using an energy balance and mass balance model of equilibrium line altitude (ELA), the height on a glacier where accumulation and ablation are in balance annually. Climate forcing for the ELA model is obtained from idealized single‐forcing orbital simulations with two atm‐ocean general circulation models, Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 and National Center for Atmospheric Research (NCAR) Community Earth System Model version 1.2. Over Scandinavia and Baffin Island, the respective locations in which the Scandinavian and Laurentide ice sheets are thought to have originated, low obliquity and perihelion at the boreal winter solstice are associated with lower ELA values, as would be expected from the orbital theory of the ice ages. Linear reconstructions of ELA variations over the past 800 kyr indicate that precession dominated ELA variations in Scandinavia and Baffin Island in the GFDL model, and in Scandinavia in the NCAR model. Obliquity and precession played equal roles in Baffin Island in the NCAR model. A decomposition of the ELA responses finds that the effects of ablation on ELA are much larger than the effects of precipitation. Overall, the findings of this study point to precession being a more important factor in glacial inception than obliquity, which contrasts with previous findings in which obliquity had a slightly larger effect on positive degree days (PDDs), a simple metric for ablation. This is likely due to differences in seasonality of melt from the ELA model and PDDs.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3