Disentangling Carbon Concentration Changes Along Pathways of North Atlantic Subtropical Mode Water

Author:

Reijnders Daan1ORCID,Bakker Dorothee C. E.2ORCID,van Sebille Erik1ORCID

Affiliation:

1. Institute for Marine and Atmospheric research Utrecht Utrecht University Utrecht The Netherlands

2. Centre for Ocean and Atmospheric Sciences School of Environmental Sciences University of East Anglia Norwich UK

Abstract

AbstractNorth Atlantic subtropical mode water (NASTMW) serves as a major conduit for dissolved carbon to penetrate into the ocean interior by its wintertime outcropping events. Prior research on NASTMW has concentrated on its physical formation and destruction, as well as Lagrangian pathways and timescales of water into and out of NASTMW. In this study, we examine how dissolved inorganic carbon (DIC) concentrations are modified along Lagrangian pathways of NASTMW on subannual timescales. We introduce Lagrangian parcels into a physical‐biogeochemical model and release these parcels annually over two decades. For different pathways into, out of, and within NASTMW, we calculate changes in DIC concentrations along the path (ΔDIC), distinguishing contributions from vertical mixing and biogeochemical processes. The strongest ΔDIC is during subduction of water parcels (+101 μmol L−1 in 1 year), followed by transport out of NASTMW due to increases in density in water parcels (+10 μmol L−1). While the mean ΔDIC for parcels that persist within NASTMW in 1 year is relatively small at +6 μmol L−1, this masks underlying dynamics: individual parcels undergo interspersed DIC depletion and enrichment, spanning several timescales and magnitudes. Most DIC enrichment and depletion regimes span timescales of weeks, related to phytoplankton blooms. However, mixing and biogeochemical processes often oppose one another at short timescales, so the largest net DIC changes occur at timescales of more than 30 days. Our new Lagrangian approach complements bulk Eulerian approaches, which average out this underlying complexity, and is relevant to other biogeochemical studies, for example, on marine carbon dioxide removal.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

UK Research and Innovation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3