Modulation of Equatorial Currents and Tropical Instability Waves During the 2021 Atlantic Niño

Author:

Tuchen Franz Philip1ORCID,Perez Renellys C.1ORCID,Foltz Gregory R.1ORCID,Brandt Peter23ORCID,Subramaniam Ajit4ORCID,Lee Sang‐Ki1ORCID,Lumpkin Rick1ORCID,Hummels Rebecca2ORCID

Affiliation:

1. NOAA/Atlantic Oceanographic and Meteorological Laboratory Miami FL USA

2. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

3. Faculty of Mathematics and Natural Sciences Kiel University Kiel Germany

4. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

Abstract

AbstractIn the boreal summer of 2021, the equatorial Atlantic experienced the strongest warm event, that is, Atlantic Niño, since the beginning of satellite observations in the 1970s. Such events have far‐reaching impacts on large‐scale wind patterns and rainfall over the surrounding continents. Yet, developing a paradigm of how Atlantic Niño interacts with the upper‐ocean currents and intraseasonal waves remains elusive. Here we show that the equatorial Kelvin wave associated with the onset of the 2021 Atlantic Niño modulated both the background flow and the eddy flux of the equatorial upper‐ocean circulation, causing an extremely weak and delayed tropical instability wave (TIW) season. TIW‐induced variations of sea surface temperature (SST), sea surface salinity, sea surface height, and eddy temperature advection were exceptionally weak during May to July, the climatological peak of TIW activity, but rebounded in August when higher than normal variability was observed. Moored velocity data at 23°W show that during the peak of the 2021 Atlantic Niño from June to August, the Equatorial Undercurrent was deeper and stronger than usual. An anomalously weak eddy momentum flux strongly suppressed barotropic energy conversion north of the equator from May to July, likely contributing to low TIW activity. Reduced baroclinic energy conversion also might have played a role, as the meridional gradient of SST was sharply reduced during the Atlantic Niño. Despite extremely weak TIW velocities, modest intraseasonal variability of chlorophyll‐a (Chl‐a) was observed during the Atlantic Niño, due to pronounced meridional Chl‐a gradients that partly compensated for the weak TIWs.

Funder

Global Ocean Monitoring and Observing Program

Climate Program Office

National Academy of Sciences

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3