Potential Contributions of Ammonia‐Oxidizing Microorganisms to the Distributions of Nitrous Oxide in the Northern Bering Sea

Author:

Liu Jian1ORCID,Chen Liqi1ORCID,Ling Minghuang2,Zhuang Yanpei3,Zhang Jiexia1ORCID,Ye Wangwang1ORCID,Bai Youcheng3ORCID,Wen Jianwen1ORCID,Wu Man1ORCID,Zhan Liyang1ORCID

Affiliation:

1. Key Laboratory of Global Change and Marine‐Atmospheric Chemistry Third Institute of Oceanography Ministry of Natural Resources Xiamen China

2. Key Laboratory of Marine Biogenetic Resources Third Institute of Oceanography Ministry of Natural Resources Xiamen China

3. Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

Abstract

AbstractOceanic N2O is a major source of atmospheric N2O gas and is involved in global warming and ozone depletion. It is thought to be mainly produced by nitrification, denitrification and nitrifier denitrification processes mediated by ammonia‐oxidizing bacteria, ammonia‐oxidizing archaea (AOA) and denitrifying bacteria. The Bering Sea, especially its continental shelf area, is considered a typical source of atmospheric N2O. During the 7th Chinese National Arctic Research Expedition (CHINARE2016), the distributions of N2O and ammonia‐oxidizing microorganisms (AOOs) in the Bering Sea continental shelf and abyssal basin water were investigated. At a depth of 50∼900 m within the abyssal basin, the in‐situ ammonia oxidation process, particularly performed by AOA, exhibits considerable potential for the formation of supersaturated N2O. Meanwhile, beneath the oxygen minimum zone (depth range is approximately 800∼1,000 m), supersaturated N2O is primarily driven by mixing processes, while the ammonia oxidation mediated by AOA also contributes to a certain extent. In addition, the N2O distribution characteristic exhibits a substantial disparity between the southern and northern Bering Sea shelves, with the former characterized as a mild sink and the latter as a weak source. The water column of the Bering Sea demonstrates a considerable potential for generating supersaturated N2O through ammonia oxidation, as corroborated by the current study.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3