Primary Production and Respiration in the Norwegian Sea Estimated From Biogeochemical Argo Floats

Author:

Mork Kjell Arne1ORCID,Gundersen Kjell1,Børsheim Knut Yngve1ORCID,Dall'Olmo Giorgio2ORCID,Skagseth Øystein1,Søiland Henrik1ORCID

Affiliation:

1. Institute of Marine Research and the Bjerknes Centre for Climate Research Bergen Norway

2. National Institute of Oceanography and Applied Geophysics – OGS Sgonico Italy

Abstract

AbstractBiogeochemical (BGC) Argo floats were used in this study to investigate phytoplankton blooms. We assessed the seasonal and annual rates of net primary and community production, along with respiration in the Norwegian Sea. The years 2020 and 2021 were contrasted to illuminate similarities and differences. In both years the onset of the bloom occurred at the beginning of February, coinciding with a deep winter mixed layer. However, during spring and summer the biological production appeared to develop differently. In 2020 the mixed layer depth shoaled quickly in April due to surface heating, triggering a strong spring bloom event. In contrast, a significant surface cooling in April 2021 triggered a substantial vertical mixing, that delayed the mixed layer's shoaling. This delay initiated cascading effects impacting nitrate consumption and bloom development that resulted in increased respiration in 2021 compared to 2020. In both years, vertical nitrate mixing from deeper layers to the surface emerged as a pivotal factor determining primary production. Using a mixed layer model in combination with Argo observations, we found that the upward nutrient fluxes due to mixing doubled net community production. These findings underscore the capability of BGC‐Argo floats, operating at a 5‐day resolution, to unveil the intricate interplay between hydrography, physical drivers, and biogeochemical processes in shaping phytoplankton dynamics and overall ecosystem productivity in the Norwegian Sea.

Funder

Norges Forskningsråd

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3