Affiliation:
1. College of Fisheries and Ocean Science University of Alaska Fairbanks Fairbanks AK USA
2. School of Earth, Ocean, and Environment University of South Carolina Columbia SC USA
3. Department of Civil and Environmental Engineering University of South Carolina Columbia SC USA
4. Department of Civil and Environmental Engineering California Polytechnic State University San Luis Obispo CA USA
Abstract
AbstractConvergent estuaries have been shortened by dam‐like structures worldwide. Here, we evaluate 31 long‐term water level stations and use a semi‐analytical tide model to investigate how landward‐funneling and a dam influence tidal and storm surge propagation in the greater Charleston Harbor region, South Carolina, where three rivers meet: the Ashley, Cooper, and Wando. Results show that the phase speed and amplification of the principal tidal harmonic (M2) is larger than other long waves such as storm surge (∼1–4 days) and setup‐setdown (∼4–10 days). Further landward, all waves attenuate, but, as they approach the dam on the Cooper River, a frequency dependent response in amplitude and phase progression occurs. A semi‐analytical tidal model shows that funneling and the presence of a dam amplify tidal waves through wave interference from partial and full reflection, respectively. The different phase progressions of the reflected waves interact with the incident wave to increase or decrease the summed overall wave amplitude. Using a friction‐convergence parameter space, we demonstrate that dominant tides in 23 estuaries and the tidal, storm surge, and setup‐setdown waves in the Cooper River can be delineated into three regimes that describe landward amplification or attenuation associated with funneling, a dam, or both. The regime of each tidal constituent is consistent but can change with the duration and height of each storm surge event; dam associated wave interference can attenuate long‐duration events, while the most intense events (short duration, high water) are amplified by dams more than funneling and greatly increase flood exposure.
Funder
Office of the Vice President for Research, University of South Carolina
National Science Foundation
Publisher
American Geophysical Union (AGU)