Reflection of Storm Surge and Tides in Convergent Estuaries With Dams, the Case of Charleston, USA

Author:

Dykstra Steven L.123ORCID,Talke Stefan A.4ORCID,Yankovsky Alexander E.2ORCID,Torres Raymond2ORCID,Viparelli Enrica3ORCID

Affiliation:

1. College of Fisheries and Ocean Science University of Alaska Fairbanks Fairbanks AK USA

2. School of Earth, Ocean, and Environment University of South Carolina Columbia SC USA

3. Department of Civil and Environmental Engineering University of South Carolina Columbia SC USA

4. Department of Civil and Environmental Engineering California Polytechnic State University San Luis Obispo CA USA

Abstract

AbstractConvergent estuaries have been shortened by dam‐like structures worldwide. Here, we evaluate 31 long‐term water level stations and use a semi‐analytical tide model to investigate how landward‐funneling and a dam influence tidal and storm surge propagation in the greater Charleston Harbor region, South Carolina, where three rivers meet: the Ashley, Cooper, and Wando. Results show that the phase speed and amplification of the principal tidal harmonic (M2) is larger than other long waves such as storm surge (∼1–4 days) and setup‐setdown (∼4–10 days). Further landward, all waves attenuate, but, as they approach the dam on the Cooper River, a frequency dependent response in amplitude and phase progression occurs. A semi‐analytical tidal model shows that funneling and the presence of a dam amplify tidal waves through wave interference from partial and full reflection, respectively. The different phase progressions of the reflected waves interact with the incident wave to increase or decrease the summed overall wave amplitude. Using a friction‐convergence parameter space, we demonstrate that dominant tides in 23 estuaries and the tidal, storm surge, and setup‐setdown waves in the Cooper River can be delineated into three regimes that describe landward amplification or attenuation associated with funneling, a dam, or both. The regime of each tidal constituent is consistent but can change with the duration and height of each storm surge event; dam associated wave interference can attenuate long‐duration events, while the most intense events (short duration, high water) are amplified by dams more than funneling and greatly increase flood exposure.

Funder

Office of the Vice President for Research, University of South Carolina

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3