Localized Tidal Energy Extraction in Puget Sound Can Adjust Estuary Reflection and Friction, Modifying Barotropic Tides System‐Wide

Author:

Spicer Preston1ORCID,MacCready Parker2ORCID,Yang Zhaoqing13ORCID

Affiliation:

1. Coastal Sciences Division Pacific Northwest National Laboratory Seattle WA USA

2. School of Oceanography University of Washington Seattle WA USA

3. Department of Civil and Environmental Engineering University of Washington Seattle WA USA

Abstract

AbstractHarvesting energy via tidal stream turbines is being increasingly considered as a renewable energy resource in estuaries with strong tidal currents. It remains unclear how localized energy extraction changes basic tidal physics throughout real systems. Here, we analyze the influence of an extensive synthetic tidal turbine array on barotropic tides in the Salish Sea, a complex, tidally energetic estuary, using a realistic numerical model. Tidal energy fluxes are calculated at 15 sections throughout the system and decomposed into incident and reflected components, as well as by frequency. Results show the dominant semidiurnal constituent, M2, controls the total tidal energy flux everywhere. When turbines are placed in Tacoma Narrows, the M2 energy flux is enhanced at sections seaward of the array in Puget Sound and reduced landward. The principal diurnal constituent, K1, contributes little to the total energy flux, but behaves similarly. Changes to each constituent are primarily attributed to turbine enhanced frictional dissipation which reduces the estuary's natural resonant period (∼10 hr) amplification. Being close to the semidiurnal frequencies, the resonance adjustment reduces M2 tidal reflection seaward of the turbines and free surface amplitude (particularly landward of the turbines) thereby increasing (decreasing) tidal energy fluxes at seaward (landward) locations. K1 is further from the natural frequency and insensitive to resonance changes. We hypothesize K1 is directly sensitive to increased frictional dissipation which acts to reduce reflection and tidal amplitude, regardless of the estuary natural frequency. Spatial variability in dynamics is discussed, as well as potential environmental implications.

Funder

Water Power Technologies Office

Publisher

American Geophysical Union (AGU)

Reference68 articles.

1. Variability of subtidal current structure in a fjord estuary: Puget Sound, Washington

2. Codiga D. L.(2011).Unified tidal analysis and prediction using the UTide Matlab Functions. Retrieved fromftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga‐UTide‐Report.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3