Bayesian Hierarchical Modeling for Probabilistic Estimation of Tsunami Amplitude From Far‐Field Earthquake Sources

Author:

Boumis Georgios1ORCID,Geist Eric L.2ORCID,Lee Danhyang3ORCID

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering University of Alabama Tuscaloosa AL USA

2. U.S. Geological Survey Pacific Coastal and Marine Science Center Moffett Field CA USA

3. Department of Information Systems, Statistics, and Management Science University of Alabama Tuscaloosa AL USA

Abstract

AbstractEvaluation of tsunami disaster risk for a coastal region requires reliable estimation of tsunami hazard, for example, wave amplitude close to the shore. Observed tsunami data are scarce and have poor spatial coverage, and for this reason probabilistic tsunami hazard analysis (PTHA) traditionally relies on numerical simulation of “synthetic” tsunami generation and propagation toward the coast. Such an approach has been extensively studied in the past and it is widely recognized as an important disaster‐risk mitigation tool. PTHA can not only provide less uncertain and spatially coherent hazard estimates in comparison with classical empirical data analysis which is restricted at the tide gauge stations, but also local inundation information. In this paper, we explore a purely statistical alternative to traditional PTHA for evaluation of tsunami amplitude hazard. Here, we use tide gauge measurements of tsunami amplitude along the western United States, specifically California and Oregon, and develop a spatial Bayesian hierarchical model (BHM) to assess tsunami hazard from far‐field earthquake sources at various recurrence intervals. The configuration of our model incorporates latent Gaussian fields that utilize information on the distance between tide gauges as well as on the continental shelf width, that is, a covariate linked to potential dissipative effects on wave energy as the tsunami travels over shallow water. Through our BHM, we produce spatially continuous probabilistic maps of far‐field tsunami hazard which can aid comprehensive tsunami disaster risk reduction and management.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tracing the sources of paleotsunamis using Bayesian frameworks;Communications Earth & Environment;2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3