Affiliation:
1. Ecole Normale Supérieure Laboratoire de Météorologie Dynamique (LMD) Paris France
2. Laboratoire d’Océanographie Physique et Spatiale (LOPS) Université de Bretagne Occidentale (UBO) IUEM Plouzané France
Abstract
AbstractMesoscale eddies play an important role in transporting water properties, enhancing air‐sea interactions, and promoting large‐scale mixing of the ocean. They are generally referred to as “coherent” structures because they are organized, rotating fluid elements that propagate within the ocean and have long lifetimes (months or even years). Eddies have been sampled by sparse in‐situ vertical profiles, but because in‐situ ocean observations are limited, they have been characterized primarily from satellite observations, numerical simulations, or relatively idealized geophysical fluid dynamics methods. However, each of these approaches has its limitations. Many questions about the general structure and “coherence” of ocean eddies remain unanswered. In this study, we investigate the properties of seven mesoscale eddies sampled with relative accuracy during four different field experiments in the Atlantic. Our results suggest that the Ertel Potential Vorticity (EPV) is a suitable parameter to isolate and characterize the eddy cores and their boundaries. The latter appear as regions of finite horizontal extent, characterized by a local extremum of the vertical and horizontal components of the EPV. These are found to be closely related to the presence of a different water mass in the core (relative to the background) and the steepening of the isopycnals due to eddy occurrence and dynamics. Based on these results, we propose a new criterion for defining eddies at the mesoscale. We test our approach using a theoretical framework and explore the possible magnitude of this new criterion, including its upper bound.
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献