Application of Recurrent Neural Networks to Model Bias Correction: Idealized Experiments With the Lorenz‐96 Model

Author:

Amemiya A.12ORCID,Shlok M.134ORCID,Miyoshi T.125ORCID

Affiliation:

1. RIKEN Center for Computational Science Kobe Japan

2. RIKEN Cluster for Pioneering Research Kobe Japan

3. Department of Electrical Engineering and Information Systems Graduate School of Engineering The University of Tokyo Bunkyo Japan

4. Now at Ultraleap, Inc. Bristol UK

5. RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program Kobe Japan

Abstract

AbstractSystematic biases in numerical weather prediction models cause forecast deviation from reality. While model biases also affect data assimilation and degrade the analysis accuracy, observation information incorporated through data assimilation can provide information for detecting and alleviating such biases. In this study, the application of machine learning to model bias correction is demonstrated, emphasizing the effectiveness of recurrent neural networks. Idealized experiments are performed using the two‐scale coupled Lorenz‐96 model as the true system and single Lorenz‐96 model as the imperfect forecast model, to compare the effectiveness of bias correction methods based on various architectures of neural networks and simple linear regression. The neural networks generally outperformed linear regression, and recurrent neural networks showed the best ability in finding the systematic bias component from the analysis increment data. Bias correction using the recurrent neural networks also gives the most significant improvement in reducing the error growth rate in extended range forecasts. The results suggest that including past time series of the forecast variables improve model bias correction when limited information of the observation is incorporated through data assimilation.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3