Reconstruction of 3D DPR Observations Using GMI Radiances

Author:

Yang Yunfan12ORCID,Han Wei34ORCID,Sun Haofei12,Xie Hejun5,Gao Zhiqiu12ORCID

Affiliation:

1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC) Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. CMA Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration Beijing China

4. State Key Laboratory of Severe Weather (LaSW) Chinese Academy of Meteorological Sciences, China Meteorological Administration Beijing China

5. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province School of Earth Sciences, Zhejiang University Hangzhou China

Abstract

AbstractThree‐dimensional global precipitation observation is crucial for understanding climate and weather dynamics. While spaceborne precipitation radars provide precise but limited observations, passive microwave imagers are available much more frequently. In this study, we propose a deep learning approach to reconstruct active radar observations using passive microwave radiances. We introduce the Hybrid Deep Neural Network (HDNN) model, which utilizes reflectivity profiles from the Dual‐frequency Precipitation Radar (DPR) onboard the Global Precipitation Measurement (GPM) Core Observatory Satellite as the “target” and combines radiances from the GPM Microwave Imager (GMI) with supplementary reanalysis data to serve as the “features.” Results underscore the HDNN's exemplary performance, with a root mean square error below 4 dBZ across all altitude levels, and a consistent accuracy across different precipitation types. Its efficacy is further illustrated when applied to typhoon cases of Haishen and Khanun, emerging as a superior tool for capturing 3D structures of expansive precipitation systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3