Affiliation:
1. China‐ASEAN College of Marine Sciences Xiamen University Malaysia Sepang Malaysia
2. College of Ocean and Earth Sciences Xiamen University Xiamen China
Abstract
AbstractTwo major trans‐basin mooring arrays, the Rapid Climate Change‐Meridional Overturning Circulation and Heatflux Array (RAPID) at 26.5°N since 2004 and the Overturning in the Subpolar North Atlantic Program (OSNAP) situated at 53°–60°N since 2014, have been continuously monitoring the Atlantic Meridional Overturning Circulation (AMOC). This study explores the connectivity of AMOC across these two mooring lines from a novel adiabatic perspective utilizing a model‐based data set. The findings unveil significant in‐phase connections facilitated by the adiabatic basinwide redistribution of water between the two lines on a monthly timescale. This adiabatic mode is a possible cause for the observed subpolar AMOC seasonality by OSNAP. Furthermore, the Labrador Sea was identified as a hotspot for adiabatic forcing of the overturning circulations, primarily attributed to its dynamic isopycnal movements.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献