On the More Complex Wavelength Dependency of Airy Isostasy in Icy Shells of Ocean Worlds

Author:

Tucker Wesley S.1ORCID,Dombard Andrew J.1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Illinois Chicago Chicago IL USA

Abstract

AbstractThe topography of ocean worlds is often used to infer ice shell thicknesses by assuming topography is compensated by a basal root. We systematically test the stability of isostatically compensated topography in ice shells. At short horizontal wavelengths, lithospheric strength can support surface topography, while at long wavelengths, buoyancy forces can support topography at the surface and base of the ice shell over geologic time scales. These behaviors are also seen for Airy isostasy in terrestrial worlds. Contrastingly at intermediate scales, the mechanically weak lower ice shell can inhibit the transfer of buoyancy forces to the surface. Factors such as surface temperature can alter the contribution of lithospheric strength, decreasing the stability of a compensating root. This nuanced understanding of icy shell lithospheres provides crucial insights for interpreting surface features and inferring underlying ice shell thickness, with substantial relevance for upcoming space missions to the Jovian system.

Funder

National Aeronautics and Space Administration

Jet Propulsion Laboratory

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3