Vegetation Productivity Slowdown on the Tibetan Plateau Around the Late 1990s

Author:

Ren Yanghang1,Wang Han1ORCID,Yang Kun12ORCID,Li Wei1ORCID,Hu Zhongmin3ORCID,Ma Yaoming24567ORCID,Qiao Shengchao1

Affiliation:

1. Department of Earth System Science Ministry of Education Key Laboratory for Earth System Modeling Institute for Global Change Studies Tsinghua University Beijing China

2. State Key Laboratory of Tibetan Plateau Earth System and Resource Environment Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

3. College of Ecology and Environment Hainan University Haikou China

4. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

5. College of Atmospheric Science Lanzhou University Lanzhou China

6. National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes Dingri China

7. Kathmandu Center of Research and Education Chinese Academy of Sciences Beijing China

Abstract

AbstractTibetan Plateau (TP) has experienced a slowdown of the vegetation greening since the late 1990s. This structural change (i.e., greening) along with canopy physiology (i.e., potential photosynthetic productivity) regulates vegetation gross primary productivity (GPP). However, it remains unclear how the joint regulation influences the trend of alpine GPP under climate change. Here, we validate a universal productivity model against flux‐based and satellite‐derived observations at TP and diagnose the long‐term climatic impacts on GPP via canopy physiology and structure. We found an increasing but weakening trend of GPP after 1998. About 3/4 of this slowdown was attributed to the slowing greening after 1998, which was caused by the fact that the stress of atmospheric aridity and reduced benefits of warming overwhelmed the positive effects of CO2 fertilization and radiation enhancement. This study highlights the coupling between canopy structure and productivity for the long‐term period.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3