Affiliation:
1. Department of Atmospheric and Oceanic Sciences University of California Los Angeles CA USA
Abstract
AbstractThe wind‐blown flux of sand generates dunes, wind erosion, and mineral dust aerosols. Existing models predict sand flux using the wind friction velocity that characterizes near‐surface turbulent momentum fluxes. However, these models struggle to accurately predict sand fluxes. Here we analyze root causes of these model discrepancies using high‐frequency field measurements of winds and sand fluxes. We find that friction velocity is only predictive of sand fluxes on long timescales, when it correlates with horizontal wind speed. On shorter timescales, and for non‐ideal surface conditions, friction velocity is much less predictive, likely because the near‐surface wind momentum budget is dominated by other, less predictable terms. We furthermore find that variability in 30‐min averaged sand fluxes at a given friction velocity is not driven by changes in turbulence but by changes in surface conditions, raising a challenge for models. These findings can improve sand flux models and clarify their limitations.
Funder
National Science Foundation
Cold Regions Research and Engineering Laboratory
Army Research Office
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献