Affiliation:
1. Department of Atmospheric Sciences University of Utah Salt Lake City UT USA
2. Now at Atmospheric and Oceanic Sciences Program Princeton University NJ Princeton USA
Abstract
AbstractGlobally, clouds are known to warm the climate system in the thermal infrared because they typically emit thermal radiation to space at effective temperatures lower than the combined cloud‐free atmosphere and surface. However, here we show that ∼40% of low‐level clouds over sea ice tend to cool the Arctic system at TOA and contribute to a radiative cooling of the Arctic winter climate by −2.3 Wm−2, or a ∼16% reduction over the infrared warming effect of all clouds during winter. Based on satellite observations, low‐level clouds residing in surface‐based temperature inversions emit more longwave radiation to space than would occur in cloudless skies. While these clouds are known to significantly warm the surface, they cool the Arctic climate system overall. Our results imply that accurately representing the cloud radiative effects unique to the Arctic could help to constrain the regional energy budget.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献