Electron‐Scale Reconnecting Current Sheet Formed Within the Lower‐Hybrid Wave‐Active Region of Kelvin‐Helmholtz Waves

Author:

Blasl K. A.12ORCID,Nakamura T. K. M.13ORCID,Nakamura R.1ORCID,Settino A.1ORCID,Hasegawa H.4ORCID,Vörös Z.15ORCID,Hosner M.12ORCID,Schmid D.1ORCID,Volwerk M.1ORCID,Roberts Owen W.1ORCID,Panov E.1ORCID,Liu Yi‐Hsin6ORCID,Plaschke F.7ORCID,Stawarz J. E.8ORCID,Holmes J. C.9ORCID

Affiliation:

1. Space Research Institute Austrian Academy of Sciences Graz Austria

2. Universität Graz Institut für Physik Universitätsplatz 5 Graz Austria

3. Krimgen LLC Hiroshima Japan

4. Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan

5. Institute of Earth Physics and Space Science ELRN Sopron Hungary

6. Department of Physics and Astronomy Dartmouth College Hanover NH USA

7. Institut für Geophysik und extraterrestrische Physik TU Braunschweig 38106 Braunschweig Germany

8. Department of Physics Imperial College London London UK

9. Los Alamos National Laboratory Los Alamos NM USA

Abstract

AbstractWe present Magnetospheric Multiscale observations of an electron‐scale reconnecting current sheet in the mixing region along the trailing edge of a Kelvin‐Helmholtz vortex during southward interplanetary magnetic field conditions. Within this region, we observe intense electrostatic wave activity, consistent with lower‐hybrid waves. These waves lead to the transport of high‐density magnetosheath plasma across the boundary layer into the magnetosphere and generate a mixing region with highly compressed magnetic field lines, leading to the formation of a thin current sheet associated with electron‐scale reconnection signatures. Consistencies between these reconnection signatures and a realistic, local, fully‐kinetic simulation modeling this current sheet indicate a temporal evolution of the observed electron‐scale reconnection current sheet. The multi‐scale and inter‐process character of this event can help us understand plasma mixing connected to the Kelvin‐Helmholtz instability and the temporal evolution of electron‐scale reconnection.

Funder

Austrian Science Fund

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3