Strong Localized Pumping of Water Vapor to High Altitudes on Mars During the Perihelion Season

Author:

Brines A.1ORCID,López‐Valverde M. A.1ORCID,Funke B.1ORCID,González‐Galindo F.1ORCID,Aoki S.23ORCID,Villanueva G. L.4ORCID,Holmes J. A.5ORCID,Belyaev D. A.6ORCID,Liuzzi G.47ORCID,Thomas I. R.2ORCID,Erwin J. T.2ORCID,Grabowski U.8,Forget F.9,Lopez‐Moreno J. J.1,Rodriguez‐Gomez J.1,Daerden F.2ORCID,Trompet L.2ORCID,Ristic B.2ORCID,Patel M. R.5ORCID,Bellucci G.10,Vandaele A. C.2ORCID

Affiliation:

1. Instituto de Astrofísica de Andalucía (IAA/CSIC) Granada Spain

2. Royal Belgian Institute for Space Aeronomy Brussels Belgium

3. Department of Complexity Science and Engineering University of Tokyo Kashiwa Japan

4. NASA Goddard Space Flight Center Greenbelt MD USA

5. Open University Milton Keynes UK

6. Space Research Institute Moscow Russia

7. American University Washington DC USA

8. Karlsruhe Institute of Technology Institute of Meteorology and Climate Research Karlsruhe Germany

9. Laboratoire de Météorologie Dynamique IPSL Paris France

10. Istituto di Astrofisica e Planetologia Roma Italy

Abstract

AbstractHere we present water vapor vertical profiles observed with the ExoMars Trace Gas Orbiter/Nadir and Occultation for MArs Discovery instrument during the perihelion and Southern summer solstice season (LS = 240°–300°) in three consecutive Martian Years 34, 35, and 36. We show the detailed latitudinal distribution of H2O at tangent altitudes from 10 to 120 km, revealing a vertical plume at 60°S–50°S injecting H2O upward, reaching abundance of about 50 ppmv at 100 km. We have observed this event repeatedly in the three Martian years analyzed, appearing at LS = 260°–280° and showing inter‐annual variations in the magnitude and timing due to long term effects of the Martian Year 34 Global Dust Storm. We provide a rough estimate of projected hydrogen escape of 3.2 × 109 cm−2 s−1 associated to these plumes, adding further evidence of the key role played by the perihelion season in the long term evolution of the planet's climate.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3