Affiliation:
1. State Key Laboratory of Isotope Geochemistry and CAS Center of Excellence in Deep Earth Science Guangzhou Institute of Geochemistry Chinese Academy of Science Guangzhou China
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
3. Department of Geophysics Graduate School of Science Tohoku University Sendai Japan
Abstract
AbstractIn subduction zones with slab‐slab interactions, the pattern of mantle convection is very complex and still unclear. In this study, we jointly invert a large number of P and S wave arrival time data of local earthquakes for 3‐D isotropic and anisotropic velocity structures of the Banda subduction zone. Along the curved Banda arc, the subducting Indo‐Australian slab is detected clearly as a high‐velocity zone, and its azimuthal anisotropy changes along the arc strike, representing fossil anisotropy within the slab and modified anisotropy by the subduction processes. Around the northern edge of the Banda slab, a semi‐toroidal pattern of anisotropy appears in low‐velocity anomalies, representing mantle flow extruded from the Banda arc and escaped from a gap of the Banda‐Molucca slab toward the northeast. Our 3‐D anisotropic tomography uncovers the mantle convection pattern induced by the slab‐slab interactions, shedding new light on the complex dynamical processes in this curved subduction zone.
Funder
National Natural Science Foundation of China
Southern Marine Science and Engineering Guangdong Laboratory
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献