Microphysical Modeling of Fault Slip and Stability Transition in Hydrothermal Conditions

Author:

Mei Cheng1ORCID,Rudnicki John W.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Northwestern University Evanston IL USA

2. Department of Mechanical Engineering Northwestern University Evanston IL USA

Abstract

AbstractField and laboratory observations indicate that the frictional behaviors of faults depend on hydrothermal conditions. We extend the microphysical Chen‐Niemeijer‐Spiers (CNS) model to hydrothermal conditions by using the observed temperature variation of indentation hardness to infer the temperature dependence of a microphysical parameter . This parameter is assumed constant in previous versions of the CNS model. A simple spring‐slider system is used to simulate the fault system and investigate the steady‐state frictional behaviors of wet granite gouges. Our numerical results quantitatively reproduce experimental data showing the frictional‐plastic transition. The results also describe the transition from velocity‐strengthening at low temperatures (<160°C), to velocity‐weakening at intermediate temperatures (160°C–370°C), then back to velocity‐strengthening at high temperatures (>370°C). In our extended CNS model, these results suggest that the dominant shear deformation mechanism does transition from frictional granular flow to fully plastic creep with increasing temperature.

Funder

Geothermal Technologies Office

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3