Affiliation:
1. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA
2. School of Earth Sciences Zhejiang University Hangzhou China
Abstract
AbstractThe speed‐up of glaciers following ice shelf collapse can accelerate ice mass loss dramatically. Investigating the deformation of landfast sea ice enables studying its resistive (buttressing) stresses and mechanisms driving ice collapse. Here, we apply offset tracking to Sentinel‐1A/B synthetic aperture radar data to obtain a 2014–2022 time‐series of horizontal velocity and strain rate fields of landfast ice filling the embayment formerly covered by the Larsen B Ice Shelf, Antarctic Peninsula until 2002. The landfast ice disintegrated in 2022, and we find that it was precipitated by a few large opening rifts. Grounded glaciers did not accelerate instantaneously after the collapse, which implies little buttressing effect from landfast ice, a conclusion also supported by the near‐zero correlation between glacier velocity and landfast ice area. Our observations suggest that buttressing stresses are unlikely to be recovered by landfast sea ice over sub‐decadal timescales following the collapse of an ice shelf.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献